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SECTION I

EFFECT OF A SPACE/TIME VARIANT CHANNEL ON ADAPTIVE ARRAY PERFORMANCE:

SPATIAL DECORRELATION EFFECTS

This document is a topical report under Contract DNAO01-82-C-0273

covering the period June 21, 1982 to March 15, 1983. The subject matter con-

cerns the effect of a space/time variant channel on the ability of an adaptive

array to null jammers. Attention is concentrated on the effect of spatial

decorrelation between antenna elements (the elements themselves are assumed

small enough not to be affected by spatial decorrelation).

While other adaptive array types are considered, more analysis and

evaluation is carried out for the sidelobe canceller (SLC) configuration. For

detailed performance evaluation a Gaussian spatial correlation function and

complex Gaussian statistics are assumed for channel fluctuations. These

assumptions are appropriate to transionospheric propagation with saturated

scintillation.

1.1 CONTENTS

The subsequent report is divided into seven sections and one appen-

dix. Section 2 presents the configurations for three basic types of adaptive

arrays: the fully adaptive array, the multiple beam array, and the sidelobe

canceller.

Section 3 presents the equations defining the weights for optimum

steady state performance and the corresponding mean squared error, signal-to-

"noise ratio, and antenna pattern. The space/time channel averages and statis-

tics needed to calculate performance are presented.

IPRE VIOUS PAGE T



Section 4 presents detailed calculations of optimum performance for

the case of a two-element adaptive array. As in the other calculations in

this report, only narrowband signals are assumed so that no degradations due

to frequency-selective distortion are calculated. This was done to place em-

phasis on the impact of spatial selectivity (i.e., decorrelatio-) or direc-

tion-of-arrival fluctuations upon performance. The space/time variant channel

model without frequency selectivity consists of a collection of channels from

each transmitter to each antenna element with each such channel modeled as a

complex time-variant multiplier. Three types of analyses are conducted: non-

fading, fading with array time constants short enough to adapt to fading,

fading with array time constants too slow to adapt to fading. A two-element

half wavelength-spaced array is considered and response to a single jammer

evaluated.

Section 5 in large part presents detailed calculations for the SLC

(sidelobe canceller) array that parallel those in Section 4 for the fully

adaptive array. In this case, however, a linear array with a single antenna

and two auxiliary antennas is considered together with the response to two

jammers. At the end of this section some analytical results on processing

gain against a single jammer at large J/N (jammer-to-noise) ratios are ob-

tained for a linear array of M SLC auxiliary antennas. By processing gain we

mean the ratio of output SNR with the array functioning to achieve optimum

performance to output SNR with no adaptive array.

Section 6 carries out further analysis of SLC processing gain for a

single jammer, a linear array of M auxiliary antennas, and array time con-

stants long compared to the fading time constants. With the aid of an appro-

priate spatial correlation function, formulae are obtained for processing

6



gain. Plots are presented of processing gain as a function of the decorre-

lation between fading on adjacent antennas.

Section 7 presents the basic analysis for the more general case of

a three-dimensional grid of SLC auxiliary antennas and multiple jammers. A

computer program was written to calculate processing gain for this general

case but it has not been exercised to any extent yet.

Section 8 develops expressions for the error rate of modems used in

conjunction with an SLC (sidelobe canceller) adaptive array. It is assumed

that the propagation medium produces decorrelations in time, space, and fre-

quency, on the transmitted signals. However, it is assumed-that the adaptive

array time constants are too slow to adapt to the fading and that the signal

bandwidth is narrow enough to avoid significant frequency-selective fading.

Thus the performance degradation suffered by the array is caused by spatial

selectivity and nonadaptation to the fading. The analysis is concerned with

the error rate performance of a digital modem connected to the output after

the SLC has attempted to cancel the jamming signals. As in the case of the

adaptive array, two cases may be considered: the modem time constants may or

may not allow adaptation to the fading. In this section we consider the case

of a fading adaptive modem. In order to obtain adequate error rate perform-

ance it is necessary to employ coding, interleaving, and forward error cor-

rection techniques. The raw error rates computed here may be used to evaluate

the improvement offered by interleaved hard-decision error correction coding

techniques. Some numerical results on error rate are obtained showing the

impact of spatial decorrelation.



1.2 CONCLUSIONS

In the case of a fading adaptive array, it is possible in theory *

for the antenna pattern nulls to become sharper with increasing jammers' power

until the jammers are completely nulled and the output SNR is independent of

jammer levels. This same behavior exists for the non-fading non-dispersive

channel. However, there are degradations over the non-fading case even with a

fading adaptive array. Aside from fading per se, which produces large modem

performance degradations over the non-fading case, there is degradation due Co

the fact that the fluctuating angle of arrival of the signal and the jammers

may cause jammers to apparently come close enough to the signal direction to

prevent nulling at any reasonable jammer level.

In the case of the fading non-adaptive array, the situation is

quite different. For the fully adaptive array it is shown that as the fading

becomes severe enough so that the mean field disappears, the array "shuts

down", i.e., the adaptive weights go to zero. With any non-zero mean field

the output SNR at large jammer levels becomes proportional to the input J/S

ratio, indicating that a perfect null cannot be formed at large jammer powers

as in the fading adaptive case. The sidelobe canceller does not shut down as

the mean field goes to zero. However, the output SNR is proportional to the

J/S ratios at large jammer levels also. If the decorrelation between auxil-

iary antennas is sufficiently small and if sufficient number of antennas exist

in relfation to the number of jammers, the SLC array can provide adequate proc-

essing gain against the jammers. The reader is referred to Figures 6.2 and

8.2 for calculations of the impact of spatial decorrelation on processing gain

Practical limitations prevent reaching complete jammer cancellation. We do
not discuss these limitations here since our emphasis is on determining the
impact of spatial decorrelation.

8
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and error rate for the case of a single jammer. With only one auxiliary

antenna the impact of spatial decorrelation becomes significant with small

amounts of decorrelation. Thus from Figure 8.2 it may be determined that when

the correlation coefficient between adjacent auxiliary antennas drops from

1.0, perfect correlation, to 0.9985, the PSK modem analyzed suffers approxi-

mately a 3 dB degradation in SNR performance. However, as the results of

Figure 6.2 indicate, the addition of another auxiliary antenna will cause a

very large improvement in processing gain and remove the SNR degradation for

the same amount of decorrelation.

While a computer program has been developed to handle quite general

three-dimensional antenna configurations and multiple jammers, there has not

been time to generate results for this report. Also, the theory developed for

error rate is valid for multiple jammers and antennas but insufficient time

was available to Calculate results for this report. The results obtained

should be extended to include the effect of time and frequency selective fad-

ing. When the bandwidths become so large that system operation is impossible

due to frequency selective fading, the system must be modified to include

adaptive equalize s at the outputs of antennas.

L9



SECTION II

SYSTEMS TO BE ANALYZED

Figure 2-1 shows a simplified block diagram of a fully adaptive

array showing M elements and M complex weights connected to the antenna

element outputs followed by a combiner. For simplicity, all trequency

conversion and filtering operations are not shown. The combiner output c(t)

is fed to the modem and to the adaptation circuitry. A reference signal r(t)

is extracted from the modem and/or combiner output. An error signal e(t) is

formed by subtracting the combiner output from the reference signal

e(t) = r(t) - c(t) (2-1)

The error signal and the antenna element outputs are fed to a signal processor

that implements an adaptation algorithm for the complex weights p,, ... pM.

The transmitter nodes are labeled 0, 1, ... L with the signal s(t)

being transmitted from node 0 and the jammers j 1 (t), "' JL (t) from nodes 1,

2, ... L, respectively. At the k th antenna element, the received process is

represented as the sum of three terms

wk(t) = Sk(t) + ik(t) + nk(t) (2-2)

a signal term 5k (t), a jammer term ik(t), and an additive thermal noise term

nk(t). The jammer term i k(t) may be represented as the sum of contributions

thfrom the L jammers to the k antenna element

L

ik(t) = imk(t) (2-3)

m= 1

where i mk(t) is the jamming signal received at the k thantenna element from the
th

m Jammer.

10
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The signal term sk(t) may be expressed in the form

Sk(t) = fs(t-E) hok(t,&) d& (2-4)

where hok(t,C) is the time variant impulse response of the channel from node 0

to antenna element k. In general we represent the time-variant impulse

response from node m to antenna element k as hmk(t,t). The corresponding time

variant transfer function is

Hmk(f~t) = f hmk(t,&) e-j2lf dý (2-5)

In terms of the time variant transfer function

sk(t) = f S(f) Hok(f,t) ej 21ft df (2-6)

where S(f) is the spectrum of the transmitted signal.

The received jamming signal i mk (t) has the two equivalent ex-

pressions

imk(t) = f m(t-ý) hmk t,t) d f (2-7)

imk (t) = f J m(f) Hmk(f,t) ej2rft df (2-8)

where Jm (f) is the spectrum of jm(t).

The combiner output is given by

M

c(t) P • Pk wk(t) (2-9)

k=1

12
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The system of Figure 2-1 uses an array of wide beam antenna ele-

ments or subarrays. An ilternate approach is to form multiple orthogonal

beams by a linear transformation (e.g., Butler matrix) and apply the adap-

tivity on the beam port outputs as shown in Figure 2-2. Q < M beams are

formed by separate linear transformations on the M subarray outputs. The Q

beamport outputs are fed to adaptive complex weights and the adaptation

circuitry is the same as in Figure 2-1.

Another system configuration of interest is the sidelobe canceller

or power nuller shown in Figure 2-3. Under normal conditions the desired

signal appears only in the main beam of the signal antenna and the jammer

appears in the sidelobes. The auxiliary antennas perceive the jamming signals

and by weighting the outputs of the auxiliary antennas and subtracting from

the signal antenna output attempts to cancel the jamming signal. The system

of Figure 2-3 can be cast in the framework of Figure 2-1 by identifying the

signal antenna output as the reference signal. With ionospheric scintillation

present, the transmitted signal may appear in the sidelobes and auxiliary

antenna outputs and the jammer may appear in the signal antenna. For this

reason we have shown paths from each transmitter to each antenna.

In this report we will confine our attention to the systems of

Figures 2-1 and 2-3.

13
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SECTION III

OPTIMUM PERFORMANCE

In the performance analyses we shall have occasion to assume either

complete adaptation to the fading or no adaptation to the fading. In the

former case it is assumed in effect that the time constants of the adaptation

circuits are sufficiently small for the system to follow the instantaneous

fluctuations in the time variant transfer functions Hmk(ft). In the ldtter

case the adaptive circuits average over the fading. (We neglect non-ideali-

ties in the adaptation process and circuitry.) In the former case the weights

{Pk (t); k=1,2,...M} are continually adjusted to minimize the mean squared

error signal le(t) lj averaged over the transmitted signal and jammer statis-

tics and the thermal noise fluctuations. The resultant mean squared error,

weights, antenna pattern, SNR's, etc. will be time variable even with non-

moving jammers and signal sources because of the fluctuations of the channels.

In the latter case the system will adapt to changes in the channel statistics

only.

It is well known (e.g., see [3.1]) that the solution for the

weights which yield the minimum mean squared error is given by

P C cI R (3-1)

where

P M]l' P21 "'" 1p(3-2)

r w (RT = L , r, M (3-3)
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IWl,1 Wl 2 1•M

;'7W1  JW2 1 2;j

C (3-4)

M ~~W 1 M2 I

in which T denotes matrix transpose and we have suppressed the time variable

to simplify notation. It should be understood that the averages assume the

channels "frozen".

The value of the minimum mean squared error is given by [3.1]

1 Tj = Tr -TR C-1 R (3-5)

or, alternatively, from (3-1)

le = 1 rT2 - RH P (3-6)

where the symbol H denotes a combination of matrix transpose and complex con-

jugate operations ("Hermitian" transpose).

To formulate an expression for the antenna pattern, it is necessary

to specify the geometry of the antenna subarray locations. For simplicity we

assume a linear array with half wavelength spacing between subarray centers.

In such a case the antenna gain pattern is expressed as

; 1 M eJ•(k-l)sino I

G(O) = Gs(S) I E k (3-7)
RI k=l

where Gs(0) is the antenna gain pattern for a single subarray and * is the

angle measured from boresight.

17



We may formulate an expression for the output SNR, p. This dis-

cussion of SNR is for the fully adaptive array and must be modified for the

SLC (sidelobe canceller) configuration. See Section 5.

ME Pk Sk pH S p
M p

(NI + J)P

-Mk•__i -pk(ik+nk --PH (NI + J) 3

where I is the identity matrix,

N : InkI (3-9)

TS-17 1 '2 1 _M

2 1 12 2l
S- (3-10)

SM*s 1 SM*S2 ... IsM12

T" J2 1 2 '1 M

2 1 7127 T21
j - (3-11)

and it has been assumed that the thermal noises in the different antenna

elements are statistically independent and of the same level.

18
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Since

C S + J + NI (3-12)

(3-8) may be expressed in the alternate form

PH -1 (33
P H (NI + J) P(3-13)

and from (3-1),(3-6) we obtain the further equivalent expressions

RH p
H -1 (3-14)

P (NI + J) P

TrT - I e 1

P = pH (NI + J) P - (3-15)

We now consider the evaluation of the averages required to deter-

mine P, 1eJ 2 , p, and G(€). In the evaluation we shall assume that the signal

and jamming processes are statistically stationary. Thus [3.2]

S*(f) S(O) = P(f) W(f-1) (3-16)

Jm*(f)Jm(t) Pm(f) 6(f-1) (3-17)

where P(f), P m(f) are the power spectra of the transmitted signal and the mth

transmitted jamming signal and 6(-) is the unit impulse function. We shall

also assume that the various jamming signals are statistically independent to

simplify notation.

19



The received signal crosscorrelations are given by

s* : ff S*(Ff)S( T7 Hok*(f t) Hoq(.,t) e j2w( i-f)t dfdt (3-19)

k q Ok Oq

Using (3-16)

5 S* = fP(f) Hok*(f,t) Hoq(ft) df (3-20)

The received jamming signal crosscorrelations are given by

i i = i *
kq mk mq

k• i *(f) J(m() Hmk*(ft) Hmq(,t) e dfdt (3-21)k

Using (3-18)

iki* Pm(f) H (f,t) H (f,t) df (3-22)kq k Hmk* mq(

We see that in general it is necessary to specify the joint sta-

tistical properties of the various transfer functions to evaluate the statis-

tical properties of the optimum solution to the adaptive array problem. In

the case of strong ionospheric scintillations the channel transfer functions

become complex Gaussian processes. Then their joint statistical properties

can be determined from knowledge of the correlation functions

H * (f ,t) H ( ., sF = R (fL;t s); m,n = 0,1 ..... L
nk mq nmkq ; k,q = 1,2,. ,M (3-23)

This correlation function is more general than the mutual coherence functions

normally considered, in that we are asking for the time, frequency, and spa-

tial coherence functions for received signals corresponding to transmission of

carriers from two different locations in space rather than one.

20



SECTION IV

TWO-ELEMENT EXAMPLE FOR FULLY ADAPTIVE ARRAY;
NON-FREQJENCY SELECTIVE CASE

In this section we apply the results of the previous section to the

simplest non-trivial example, the case of two omni-directional antenna

elements separated by a half-wavelength as shown in Figure 4-1. Such a con-

figuration is able to discriminate against a single jammer. We confine our

attention in this section to signaling elements that are sufficiently narrow-

band that no frequency selective distortion is caused by the disturbed trans-

ionospheric channel.

4.1 PERFORMANCE WITHOUT CHANNEL DISTURBANCE

It is instructive to compare the performance before and after the

onset of the channel disturbance. In the absence of a channel disturbance, it

is sufficient to model the quiet or non-disturbed channel by a simple phase

shift for the case of narrowband systems, as assumed here. With the desired

transmitted signal on boresight we may use

H0 1(f,t) = H0 2 (ft) = 1 (4-1)

H1 1(f,t) = 1 (4-2)

H12(f,t) = eJ sino (4-3)

To simplify notation we have neglected path losses. This results in no loss

of generality since our answers are expressed in terms of received power

levels.

21
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With the degenerate transfer functions (4-1) through (4-3)

w1(t) = s(t) + j(t) + n1 (t) (4-4)

w2 (t) = s(t) + j(t) ejITsinO + n2 (t) (4-5)

and from (3-4)

S+J+N S+JeJ sine

C =(4-6)

S+Je-jwssine S+J+N

where

S = ls(t)V (4-7)

j = Ij(t) - (4-8)

The reference signal r(t) is taken equal to the signal s(t),

r(t) = s(t) (4-9)

so that [see (3-3)]

-T jS ,S] (4-10)

Then, using (3-1) we find that the optimum weights are

FS+J+N Si+Je jmsine -1 S
c LSJ+- (4-11)

S+dJe S+J+N S

S~23



Upon carrying out the algebra, we find that

J (1 Trsin e) + 1
P - (s) W (4-12)

(I- •jJsine) + 1

where

1
- S (4-13)4 ~~~s l in2 se) + 2(1

The minimum mean squared error is obtained by using (4-12) and

(4-10) in (3-6). Carrying out the operations and normalizing the error to the

strength of the desired signal,

0(2(-) + 1) (4-14)

For a large jamming signal (J >> S) and e not near zero

le 12 N

S 2S sin2 (•-sine) (4-15)

Turning to the calculation of output SNR (3-8) we note that

I,- I -e )+
p H S P 2 (ý) 2 {-(1-eJ*)+1,N(1-eJ*)+1t L e )N (4-16)
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where

sin e (4-17)

Upon carrying out the calculations we find that

pH S P = 2 S() 4 2() sin2(j sine) +1 (4-18)

For the output jamming and noise power we have

P H(NI+J)P =

N J+N J e4

(S1-2"L J+N 'e j4-e+J I (4-19)

Again, carrying out the operations

PHs(NI+J)P = 2 N (2J ) 2(2Jsin2(jsine) +1' (4-20)

which yields the output SNR

P = -__ __ = 2S N_ __ _ ___2 _ _ (4-21)

= PH S ( 2S 2sin2(isinae)+l)4-1

_p(NI+J)P N 2 +I

We note the limiting cases

2 2S for e ( (4-22)

2S for e * 0 (4-23)

2S sin2( sine) for sin '(sine) >> 1 (4-24)

25



For e w 1/2 the jammer is completely nulled by the same weights which maximize

the desired signal level, while for e - 0 the jammer is located on boresight

(as the desired transmitter) and no jammer suppression is possible.

It is intuitively clear that when the reference signal equals the

desired received signal s(t), an appropriate measure of SNR is provided by the

ratio of the signal strength S of the reference signal to the mean squared

departure of the output signal from the reference signal, i.e., the ratio

S/ le1 2 . From (4-13) and (4-14) we find that

N )-ýsna(jý'sine) + 2(+ i- ) + 1I4-5S N N Ný(4-25)

1eV2 2 (1 +1)

Using (4-21) in (4-24) we find that

S
: + 1 (4-26)

T7

The expression for the antenna pattern G(O) is given by (3-7).

Using (4-12) in (3-7) with Gs(O) = 1,

G(2) N 2() J ReJ~sine)+1 IJ e)+1 ej sinýG( )(1)(1- +i (1-)(1-e- es

(4-27)
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As we have mentioned, when e in/2 the janimer is completely can-

celled and the antenna pattern is set for maximum gain at 0 = 0. Collecting

terms in (4-27) and normalizing to G(O) for o = %12,

G(() +1) cos(' sine) -- cosw(sieo- ½ sine) 2
G(O) NY N 2(4-28)

G(O)=/2 22 + I
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4.2 FLAT FADING WITH SPATIAL DECORRELATION: ARRAY ADAPTIVE TO FADING

The first case we shall examine with channel distortion is that of suffi-

ciently narrowband transmission that essentially flat fading results. However

it is assumed that the antennas are far enough apart that there is some de-

correlation between the perceived jammer and signal channel fluctuations at

the two antennas. We also assume in this section that the time constants of

the adaptive circuitry are small enough to allow adaptation to the fading.

With the above assumptions we may express the channel transfer

functions in the degenerate forms

H01 (f,t) = gol(t) (4-29)

H02 (ft) = g0 2 (t) (4-30)

H11 (f,t) : gil(t) (4-31)

H12 (ft) g1 22(t) ejisine (4-32)

in which mn(t) becomes a complex Gaussian process in the limit of strong

scintillation.

The received processes are now given by

w1 (t) = g0 1 (t)s(t) + g1l(t)j(t) + n1 (t) (4-33)

w2 (t) g0 2 (t)s(t) + g0 2(t)j(t) ejisine + n2 (t) (4-34)
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and the crosscorrelation matrix by [see (3-4)]

1g9lI 2S + Ig 11 f 2J + N g* g0 2 S + g* g12 Jejirsine

C=an •jsn S' (4-35)
go 1 g*2 S + g11g 2 e i g02  + 1 2  + N (4-35)

where we have temporarily omitted the argument (t) from the complex channel

gains to simplify notation.

The reference signal-input process crosscorrelation vector takes

the form [see (3-3) and use (4-9)],

RT g* gS , g* S (4-36)

To solve for the adaptive weights we require C1- This inverse is

found to be

Jg02
2S g1~ 2J+ N -(g5 1g0 S + g*1g12Jejnsine )

C-1 1 (4-37)
- =A -(g01g0*2S + g11g12 Je -jisine) lg0112S + lglllýa + N

where the determinant

A g011-S + 1g1 2 NJ + N) (1g02 12S + jg12j
2 J + N) -

9* 9 S + gg 1 Je nsine 12 (4-38)
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Upon carrying out the algebra in (4-36) we find

Sj Igo1 1v 1g12 )2 1 - e-Jrsine(g1)(9g02 2 +

N ([)g 0 112 + igo 2  S + Liil + igj 2  _ J) + N2  (4-39)

We compute the weight vector via the matrix operation (3-1)

12 g~g12 52  j,,sine SJ + g51 SN

p C-1 R 0-. 1 g ,1. eJsino0 (4-40)

02 1gl11' -Agllg2g~l SJ + g*2 SN

The mean squared error is obtained from (3-6)

JeJ2 =S - RH P=

-( 0111 - 911 1*29*02 e 7tsine) 01 S
A 9~0 1"9 02 '] [(~ * g 1  - 11 f2g 1  isin) SJ + g*2 SN

g9 2 )g12I) - gl1g*2g02 0

(4-41)

The result is

IN (1g911' + 19121' + 1 2 (4-42)
s 1 2 1 ---. 2Rsin)1  ( 02\

(-!.)(.N) IY0 lj 1 12 -~ e (\ 1)g

+. (gOl 2 + g2 + (9g 1 1 2 + 1gl 2 1 + 1
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It is worth pausing to examine the expression (4-41). Assuming the

usual case that the jammer is much stronger than the signal and the signal

much stronger than the noise, i.e.,

J >> S >> N (4-43,

with the average strengths of the channel gains normalized to unity, i.e.,

19111g 2 1g12 1 = 1g01 1 = 190212 = 1 (4-44)

then, except where the term

A(e,t) 1 - e÷Jisine( 9 12 (102\ (4-45)

is very much smaller than unity, we have the approximation

Te .. .11i2+ I1 4-46)
S e (121g S2N A(e,t)

Let us first examine the form this expression takes when the spatial

decorrelation vanishes, i.e., when

g1 = g1 2  
(4-47)

g01  = g02  (4-48)

Then the first factor becomes the numeric 2 and

A(e,t) = 4 sin2(11 sine) (4-49)

yielding

I e~ (2 N 1(4-50)

S S 1g 01 2, 4sin2 ( 7 sine)
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We see that the dependenct: of the mean squared error on the jammer

angular position e is the same as the non-fading channel, but the level of the

mean squared error is strongly influenced by the instantaneous strength of tne

signal channel, i.e., of the received signal level. In a deep signal fade the

mean squared error will become much larger, as one would expect. However this

is the normal impact of a fading signal and must be counteracted by modem

design. At any given signal level, nowever, the adaptive array is doing its

job of suppressing the jammer via the third factor in i4-50).

Returning to (4-46) and assuming that there is a small amount of

spOLial decorre~ation, the first factor in (4-46) will reside close t' the

numeric tw, on the average. The second factor is the same as in the case of

zero spatial decorrelation. Thus it is primarily the third factor which

brings in the effect of jammer angular position on mean squared error and we

must examine this term to assess the impact of spatial dtcorrelation on the

dependence of jammer nulling on jammer angular position.

We consider now the calculation of output SNR (3-8). The relevant

matrices are

l g()ll, g *ig02

S= S (4-51)

g 0 1og2 g0 2 1'

Ig 1 2 J + N * gfl 1 J e jffsine
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After laborious calculation of

H

P p H (NI+J)PH (4-53)

it was found, again that

S p + (4-54)

jell

Apparently the relationship (4-54) is valid for the non-frequency selective

narrowband channel case. It is not known under what more general conditions

(4-54) may be valid.

Using (4-46) we find that

(•--) a(',t)1goI 1 21gl212 + IgO 1 1
2 + 1g 0 2 12  (455)

P(J) (Ig1V + =g 1 2 12) + 1

In the absence of jamming

P = (--) 19g0112+ 190212) (4-56)

Thus the adaptive array operation produces dual diversity with square law

combining in the absence of jamming.

For strong jamming

S 02 9i12•2 ) A(etl J A(e,t) >> 1 (4-57)

\ Ig19 + Ig 12 1 2

i3
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Using Eq.(3-7) and the adaptive weights (4-40) we find that the

antenna gain pattern

G(°) [I. (g*2  -e-j l(sin°-sine) o 11)9• 1•12 '('It) +(901+902 e- s jfsin ) 2

(4-58)

The ratio of the gain towards the signal location *=0 multiplied by the signal

power to the gain towards the jammer location €=e multiplied by the jammer

power is sometimes of interest. This is just

S G ( 0e - Tr g ~ ~ i s i n e g , 1 ) g g 1 A ( e , t ) + ( 19 + ) j2

JG(e) N eiwsino2 (4-59)

N (g 12-911) 901912 A(e,t) + (g901+g02

Assuming no spatial decorrelation but still scintillation

12 = g11  (4-60)

g01  = 92 (4-61)

and (4-59) simplifies to

G2 g1 1 12 sin 2 (2 sin 1-)
G(O) S (4-62)

Cos (Ir sin -

which differs from the non-fading ideal channel case only in that the factor

1g, 11
2 accounting for the jammer power fluctuation is present.
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4.3 FLAT FADING WITH SPATIAL DECORRELATION: ARRAY NON-ADAPTIVE TO FADING

In the previous section we studied the performance of the two-

element adaptive array assuming that the adaptation circuits can adapt to the

assumed flat fading. Here we consider the other extreme: adaptation circuit

time constant larqer than the fading time constant. In such a case the cir-

cuits average over both the input processes and the fading fluctuations. The

crosscorrelation matrix C (4-35) and crosscorrelation vector RT (4-36) must

then be changed to

SIg01'S + jgllj 2J + N g*ig 02 S + g* 1g12 Jej~rsine

C n* __-jsin_ (4-63)
golg* 2 S + glgl Je-j2rsine 1g0 2

2 S + vg 1 2
2 J N

RT = is, g*2 S (4-64)

where we have assumed r(t) = s(t).

We note that if the fading is sufficiently severe that

01= g0 2  = 0 (4-65)

as in the case of complex Gaussian fading, RT will vanish and the optimum

weights will go to zero, shutting off the array. This phenomenon does not

occur in the case of a sidelobe canceller as will be discussed in the follow-

ing section.
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We normalize the channel strengths and define correlation coeffi-

cients and mean as follows

011'= 021 = = = 1 (4-66)

901902

00 -(4-67)
1/gll12 19021 2

Pl11 12  (4-68)

1l112 1g0 2 12

mo : -01 : 4g2 (4-69)

With these definitions

S + J + N OS + pJ ejrsine

-sin (4-70)
0 15 + P* e jlrine S+ j + N

RT = jmS , mSj (4-71)

The inverse correlation matrix is given by

S+j + N - (pOS + OlJ ej sine

C / (4-72)
P*S + POJe-jrsine) S + J + N
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where

S2(1 - 1pO1) + J2(1 - l1012) + 2SJ(1 - Re{p0 ple i)

+ 2(S+J)N + N2  (4-73)

Using Eq.(3-1) the optimum weights are given by

(I-% + - (1-pl ej rsine) + 1mSN (4-74)

S (1-P*) + e- (1-vne + 1
0 N 1I-~ie

Note that when there is no spatial decorrelation, i.e.,

P0 = 01 = 1 (4-75)

the optimum weights differ from the non-fading case only by the factor m. In

fact it is seen that when (4-75) applies, the channel complex gains may be re-

defined as part of the corresponding transmitted processes s(t) and j(t).

Consequently, antenna patterns and SNR's will then be the same as in the non-

fading case. Mean squared errors will differ, however, because of the reduc-

tion in weights by the factor m.

If the spatial decorrelations become so severe that

P1 = P0 = 0 (4-76)

then (4-74) shows that the adaptive weights become equal in value. This will

produce an antenna pattern optimized for the signal in the absence of jamming.

Thus the jammer nulling capability has been completely destroyed.

37



Consider another special case. Suppose that there is no spatial

decorrelation for the signal, that the magnitude of the jammer spatial decor-

relation is close to unity but there is a non-zero angle, i.e.,

PO= (4-77)

lo11 1 (4-78)

ýPl = y (4-79)

then we see that the jamming is evident (apart from the factor m) only in a

replacement

-n sin 0 y -n sine (4-80)

i.e., from the point of view of the adaptive array the angular position of the

jammer has been changed to a new angle 0, where

ff sin 7 = sin e - y (4-81)

That is to say the null will be steered in error by the angle *-e.

The mean squared error is given by Eq.(3-6)

jell= S -2 IM1
2 S2, (1 -ep) + -(1 Rllj 1ie) +1
N Nl

(4-82)
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Note that unlike the situation wherein the array adapts to the fading, the

mean squared error does not vanish when the thermal noise vanishes:

(I - Re{pO}) + - (1 - Re{ple j 1 )
Je_ 2 . 1-2m'

S - (m - ] -po 2) + (i-) (1 - 20lV) + 2(l-)(1 - Re{p* eJ sine})

(4-83)

For large J/S ratios this expression further simplifies to

2_ ÷ _ 1m 2 S I - 10112jisi e

-1L-1-21ml j 1 1 - )eP1eJie (4-84)

which shows the mean squared error increasing as J/S increases. This may be

contrasted to the case of fading adaptation where the error reaches a minimum

at high J/S ratios. The problem here appears due to the term (J/S) 2(1_1 0 12)

which vanishes when spatial decorrelation is absent. It will be shown that the

term (1-1pl2) is directly proportional to variance of the angle of arrival

fluctuations due to the ionospheric scintillation.
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SECTION V

SIDELOBE CANCELLER EXAMPLES

In this section we apply the results of Section 3 to the case of a

two-element SLC (sidelobe canceller) as shown in Figure 5-1. We assume suffi-

ciently narrowband transmission that frequency selective distortion may be

ignored. As in the case of the fully adaptive array of Section 4 we consider

three cases in order: non-fading, fading with array adaptation to the fading,

and fading with array non-adaptation to fading.

To simplify the analysis we shall confine our attention to the case

wherein the signal level received in the sidelobe canceller antennas is small

enough relative to the jammer level that it may be neglected.

5.1 NON-FADING CASE

Using the above assumptions and unity gain channels, the signals

received in the three antenna beams of Figure 5-1 are expressible in the form

Wo(t) = Ao(eo)s(t) + Ao(el)jl(t) + Ao(e 2 )j 2 (t) + no(t) (5-1)

dd-j2w•-sineI -j2w-ine2

w1 (t) = A1 (el)e JA 1 j(t) + A1 (e 2 )e X j 2 (t) + n1 (t) (5-2)

d d.J2nsi neI j2ir-ine2

w2 (t) = A2 (el)e lA -(t) + A2 (e 2 )e J 2 j2 (t) + n2 (t) (5-3)

where A (e) is the complex antenna pattern for the kth antenna as a function
k kt

of the angle measured relative to boresight (see Figure 5-1) and e0 , el, and
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j1(t)

S(t) 2
00

1w1(t) 0 (t) 2w 2t)

to .
Adaptation
Algorithm P1P

2

4 o Modem

Figure 5-1 Two-Element Example of Sidelobe Canceller
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02 are the angular positions of the signal, jammer 1 and jammer 2 transmit-

ters. The distance between the electrical centers of each of the sidelobe

antenna canceller beams and the main antenna is d. To simplify notation we

shall assume identical canceller beam patterns

A1(ý) = A2 (") = A(¢) (5-4)

As discussed in Section 2, in the case of the power nulling system

the reference signal r(t) is set equal to the main beam output, i.e.,

r(t) = wo(t) (5-5)

Thus the crosscorrelation vector R [see Eq.(3-3)] is given by

R ~ w = -~~ww (5-6)

Computing the averages we find that

T Hol1e i 2J 1 + H02 e j 2J 2

RT (5-7)

-H j 1/2 
-J2 /2

H01e J1 + H02e J2

where we have used the definitions

H On = Ao(en) A*(en) (5-8)

= d4 d sin en (5-9)

and Jn is the strength of jn (t).
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The next quantity needed is the correlation matrix C [see Eq.(3-4)]

which we readily find to be

G1JI + G2 J 2 + N GiJ1 e + G2 J 2 e (-)

C (5-10)

L GiJle + G2 J 2 e 1GI + G2 J 2 + N

in which we have used the definition

Gn = JAo(On) 1
2  (5-11)

The inverse correlation matrix is given by

GIJ1 + G2J2 + N -GiJle - G2J2eLC-Ie = _I GJ 1(5-12)
A -GiJe - G e2J2 GI + G J + N

where

a = 4 GiG2JiJ 2 sin 2 (*12-2) + 2N(GIJI+ G2 J2 ) + N2  (5-13)

The optimum weights are obtained from Eq.(3-1) as

JFl J2 J~l/2 Hode2/

GJI1 + G2J2 + N -(G1J1E + G2J2E ) H01J1e +02

-jý "J*2 - J*1/2 o 2J12eJ22

-(G J e + G2 J 2 e ) GIJI + G2 J 2 + N HoiJ e + H Jde

(5-14)
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Carrying out the indicated operations we find

(2J1J(J sin G1Hoej G12Ho 2  + N 0 1J 2 + Ho 2 J 2e

A2*I 2JJJ i*--• 2Hl G/H2 ej*I/ "j ý/2 j

- + N HOiJle H0 2 J 2 e

(5-15)

The minimum mean squared error (minimum output power in the present

case) is given by Eq.(3-6). After carrying out the operations indicated we

find that

lell = G00 S + N + 2 N D (5-16)

in which

D =-N-) N 1 0 62 + 52 0 51 - 2 cos(--7)ReiHH 2 ) + 0G1 0+ 62 0(iN))

4 G-G2 sin' + 2(G( + G2

N) N 2 ý 2) N 2(JN)+'(5-17)

and we have used the definitions

Gno = 1A0(en)12 n = 1,2 (5-18)
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In the case of a single jammer (5-16) simplifies to

S2 GOOS + N + 2N G1 0 \(T) (5-19)

2G 1() +1
The first term in (5-16) is the signal output power while the re-

maining terms constitute the output noise and jamming level. Thus the output

SNR is given by

S 1
0G 0 N I + 2D (5-20)

For large J/N ratios i

JAo(0I)12IA(e 2 )J 2+,A 0 (02 )12IA(eI)H 2-2Re{A*(e 1 )A(eI)AO(a 2 )A*(e 2 )}cos(12*2)

41A(o)12,A(e92))sin2 (• -•)
2 (5-21)

Note that D is directly proportional to the level of jamming power entering

the main lobe (i,.e., the gain of the sidelobes of the main beam). If we

assume the ideal condition that the complex gain of the canceller antenna is

set equal to the complex gain of the sidelobes of the main beams and these

gains are independent of jammer position

A0 (0)1 AO0 (0 2 ) = A(eI) = A(e 2 ) (5-22)

Then we see that D= I and

G(]S
G : S (A0 = A) (5-23)

Note that the SNR has decreased by a factor of 3 over an unjammed case.
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On the other hand if the sidelobes of the main beam are much weaker than

the gain of the canceller beams, i.e.,

IAo(en)I << A(em) n,m = 1,2 (5-24)

then we see that

S

G0 G (iAoI << A) (5-25)

and no loss in output SNR will occur relative to the unjammed case.

In general, at large J/N ratios, the jammers are cancelled but the

resulting thermal noise level will vary depending upon the size of the main

beam sidelobe gains relative to the canceller beam gains.
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5.2 FLAT FADING WITH SPATIAL DECORRELATION: ARRAY ADAPTIVE TO FADING

In this section we assume the channels from the two jammers and the sig-

nal to the three elements, nine channels in all, are subjected to flat fading.

Moreover we assume that the channels from a given transmitter to the different

antennas may fade differently. The received process in the main beam, the

reference signal, may be expressed in the general form

wo(t) = h00s(t) + h1 0 j 1 (t) + h2 0 j 2 (t) + n0 (t) (5-26)

where, for simplicity, we have incorporated the effect of the main beam

antenna pattern on the received signals within the definition of the complex

channel gains h00 (t), h11 (t), and h2 0 (t).

Similarly the received processes in the two sidelobe canceller

beams are

w1 (t) = h1 1 j 1 (t) + h2 1 j 2 (t) + n1 (t) (5-27)

w2 (t) = h1 2 j 1 (t) + h2 2 j 2 (t) + n2 (t) (5-28)

where the antenna patterns of the canceller beams and any phase shifts caused

by antenna spacing are incorporated in the {hmn(t) m,n = 1,2).
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Relating the notation in the present and previous sections,

hoo(t) = AO(eO) goo(t) (5-29)

hlo(t) = A0 (e 1 ) glo(t) (5-30)

h2 0 (t) = A0 (e 2 ) g2 0 (t) (5-31)

h11 W)= A1 (e 1 ) e g11 (t) (5-32)

h2 1 (t) = A1 (6 2 ) e g2 1 (t) (5-33)

h12(t) = A2 (e 1 ) e g1 2 (t) (5-34)

3€2/2
h2 2 (t) = A2 (6 2 ) e g2 2 (t) (5-35)

where g mn(t) represent the complex channel gains that have been normalized

(without loss of generality) to unit average squared magnitude

Igmni = 1 (5-36)

Using (3-2) and (3-3) with r(t) = Wo(t) and carrying out the

indicated averages
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h hloh a + heoh* J2

R 10 nl 1J + h20h12J2 (5-37)

10 121 20 22 2

h'111
2J1 + h21I

2J2 + N h* h2 1 21 22h

C+ h (5-38)
1 2 + h2 1 h 2 J 2  h121d

2J + Ih 2 2 J 2 + N

where we have assumed that the two jammers are statistically independent and

of strengths J 1 ,J 2 .

The inverse to C is given by

Ih1 2 12J 1 + h + N -(h*lhJ + h*1h

22 2 N1 12J1 21 '22J2)

C-1= (5-39)-(hllh12 J 1 + h2 1 h22 J 2 ) Ih11 
2J 1 + Ih 2 1 12J 2 + N

where

Ih 1h1 h2 2 -h 12 h2 1 12 J1J2+ (1h1 1 1a+1h 1 2 2)NJ, + (1h21 12+1h 221)NJ2 + N

(5-40)

The optimum weights for jammer cancellation are then [from 4-70)]

P

hl 2t 1 +l jh 2 2 1'J 2 +N 1(hlh 2 JI h21 h1 2 J 2 ) h10oh 1 1 1h 20 h21J 2

.-(h h* J + h nh J  Ih 1 1
2J, + Ih 1 J2  + N h h* J +n h* J11 12 1 21 22 2 21 1, 2 10 • 12 1 20 22 2 .

9(5-41)
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Carrying out the algebra

(h 2 h11 h2 1h2 (h22h (h h 1 2 h2 0 )J J 2 + h1(hiiJiN+h2 hiJ 2 N

p( . * _- 21 1 )(hI h -h 1h )JiJ2 + hiohi 2 J N+h * J N
h22h * h21*12 1h20-21h 1N2h21 U22*2

(5-42)

Continuing on to compute the minimum mean squared error (in the

present context this would be the minimum array output power) using Eq.(3-6)

we find after considerable algebra thatJ( ()' ) AM ) +2( )
Th- T N(1 0+A 0 2 ) + (Ihlo( + Ih20 (N

Jel2 = 1hoo012S + N + N
+\N AI 2 +(" (ihll 12+Ihl 12 2)+( (In 2 1 Iz+Ih2 2 I')+i

(5-43)

where

A1 2  = 1h1 1h2 2 - h1 2 h2 1 1
2  (5-44)

A0 , = Jhloh 2 1 - h2ohll 1
2  (5-45)

A0 2  = Jhloh 2 2 - h2 0 h 1 2 12 (5-46)

The first term in (5-43) represents the output signal power while

the second two terms represent the output noise and jamming power. It follows

that the output SNR p is given by

2d+/2 1d 2 d_)+ ) 2 +

(1,1= 1h00 12 1 h

N2 2
) L + 1h Jn 1J2 + 2 I h 2  1

(LN N(6162+1) Nn=O n=O 2

(5-47)
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which becomes for large J/N ratios (A1 2 # 0)

I A J1 J2
h 2 S A12 2 >> 1 (5-48)

N0 N A01 + A0 2 + A1 2  N

The quantities Amn are functions of time due to their dependence on

the channel fluctuations, so that the resultant SNR (5-48) is also time vari-

ant. An interpretation of (5-48) is that at large J/N ratios the jammers are

cancelled at the output but the resultant thermal noise is time variable and

of level

N out = N (I + A (5-49)

For a single jammer we see that

1h0 = 2 h T 1h1 +h 1212  (5-50)J1
•- (lh 10 12 + 1h, 1 12 + 1h1 2 12 ) + 1

which at large J 1 /N values becomes

1
= Ihoo0 2 1 ho(5-51)

I + ihli1 2 + Ih-12 12 )
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5.3 FLAT FADING WITH SPATIAL-DECORRELATION: ARRAY NON-ADAPTIVE TO FADING

In this section we will assume flat fading and spatial decorre-

lation as in Section 5.2 but we now assume that the adaptation circuits cannot

follow the fading. Section 5.3.1 considers the case of two jammers and two

SLC antennas while Section 5.3.2 examines one jammer with M SLC antennas.

5.3.1 Two Jammers and Two SLC Antennas

The reference crosscorrelation vector R and correlation matrix C

now become

hlohlJ1 +hhEL (5-52)
1 12 21 ÷ 20 2J22

SChtl! 2 J + ] 2J 2 + N h J1  h~lh22J2 (553)

hh* J + h j*J ,L 11 12 1 21h 22 2  '2 J
2  +

Using (5-29) through (5-36), the averages in (5-52) and (5-53) may

be related to jammer positions, antenna patterns, and fading correlation

coefficients as follows

A0(e1) A J~i) /2 ~ll
ohl 2 h AO(ol) A*(e1 ) e 012,10 (5-54)

"22 AO(e 2 ) A*(e 2 ) e "21,20 (5-55)

0 12 Ao(01) A*2(0) e P12,10 (-6

h2• h AO(e2 A*(@2 e 02 ,0(5-57)



1h, 1 12  = 1A1 (ej)]2, (5-58)

Ih2 1 1, = IAI(e212 (5-59)

h 1212 = JA2(e)l12 (5-60)

Ih212 = A2 (A2 )) (5-61)

h•112 1 A(e Aa2 (e) e P1 l2 (5-62)

A*(h2 A e j*2 (5-63)

21h22 = 1a(e2) a2 (e 2) P2 1 , 2 2

where we have defined the correlation coefficient

mnpq ngpq (5-64)

V/ Igmn 12 Igpq 1

The correlation matrix inverse is given byc TJ)
Ih 122 1 + Ih22 122  + N -(~h 2 1 +h2 -22 2)

1 1 (5-65)

-(h+ -1hJ 2 ) !h11 J12, + Ih2 1I2 a2 + N
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where A is the determinant of C

= (1h121
2  

1 1  h h J-')j 2 + (h2  h21 12 - I1*h 12) J)

+ (1h 22 12 1h22 12 + 1h 2
212 1h2 11

2 - h2lh 2 2  *hl1h 2 - h 1 '1h2  h2 1 h* 2 )alJ2

+ N(Fhjll 2 + lhl 2 V)J 1 + N(1h2 2 12 + 1h2 1 12 ) + N2  (5-66)

Using Eqs.(5-54) through (5-63) to relate the averages in (5-66) to

the antenna gains and channel correlation coefficients

A = G12 GII(1 - IP1I,1212)JI' + G2 1 G2 2 (1 - IP2 1 , 2 2 1 2 ) J'2

+~ ~ ~ ~ p [GG+GG-2R(*AAJ

G2 2 G1 1+ G2 1 G1 2  2Re{AA1 22 IIA• 2 P21,22 12,!i 1j2

+ N(G1 1 +G12 )J 1 + N(G21+G 2 2 )J 2 + N2  (5-67)

where

Gmn = IAmnI' (5-68)

Amn = An(em) (5-69)
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Expressions for the optimum weights, mean squared error, and SNR

may be obtained as in the previous sections but these do not simplify as in

the previous case and we do not present them. A subsequent memo will present

results based on computer evaluation. However, to obtain some understanding

of the effect of spatial decorrelation without using a computer, it is suffi-

cient to consider special cases. Consider first the case of a single jammer.

Then (5-52), (5-53) and (5-65) simplify to

R r (5-70)

hL hO-- 2 J

c J +1 12 (5-71)

1 1 12 j

1 h,112 J + N - h*1h1 J

C-i : _ I h(5-72)

-h1lh* 2 J 1h,1 1 2 J + N j

where

A = J2 (Th1 1 12 1h121
2 

- 1h1lh 121
2 ) + N J(fh1-1 

2 + T 1  ) + N (5-73)
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Using (3-1) and (3-4), the optimum weights, minimum output power and output

SNR are

1h 5 T•I h*1 -- h*lO h h-- ) J + N h
- ~ I 12ih1' h 1  1 12 10 12 10 11 (-4

(,Ih1112 h10h* - 7h11  -h2  hl J + N h10h*2

le 1 Iho h00 2S + N + N (5-75)
0D 3+ ()( Ih12 1' + h1111 ) + 1

S D '3 + W + (h 12  + h 1 1 ) + 1= hO2 (5-76)

UN() D I+ (.2) D 04+ (ýN) D 5 +1

where

DI = fh 1 0 ( 2 th 11
2 1h1 2 12  

- 1hi 0 12 Ihlii 2l - h 2 2 f-f21 0h1

- 1h111 thlhi + 2 Re{ h1 0hll * h~ 1 h12  h h1oh" 2  (5-77)

02 0 h10 21'hl2 i' lh 1 1 + lh0l h1 1h-112 P h1 0h 1 2 (5-78)
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03 = Ihl 1 l2 Ih1212 - 1h 12  (5-79)

D4 = D2 + D3 (5-80)

D5 = 1h10 1
2 + ]h 12 12 + 1h1 1 12 (5-81)

and

Thj o7 = IAo(l 1)I (5-82)

Examining the SNR (5-63) for large J/S ratios we see that

S0 Iho00I2  S 03 (5-83)

Thus, ai in the fully adaptive array (Section 4.3), when the adaptive array

does not adapt to the fading, the jammer can be reduced but not cancelled and

the output SNR varies as the input S/J ratio for large J/N ratios.

The "processing gain" against the jammer (ratio of output to input

S/J ratio) is just

D3
g = (5-84)

1go 001 D1

since the input signal/jamming power ratio is

(_/Igool s (5-85)
(S'd'input d

IgglO1 2
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The presence of spatial decorrelation causes the term DI to be non-vanishing

and results in the poor asymptotic behavior (5-71). To see this, we may use

Eqs. (5-54) through (5-63) and (5-70) to express the coefficients D1 in terms

of antenna gains and channel correlation coefficients. The result is

1 0 G 1 1G 1 2 LI - IP11,121 -0 1 0 , 1 1 I - o10,12 1

+ 2 Re [ ptO ,12 1012 (5-86)

Expressions follow for D2 and D3 (and thus D4) which also exhibit

the vanishing behavior with the absence of spatial decorrelation.

02 = G10G1 2  L - IP 1 2 , 1 0 1 ] + G1 1G10  1 - P 11112 (5-87)

03 = G 1G1 2  - 101 1 , 1 2 1] (5-88)1

Thus the processing gain may be expressed as

g 1 1011,121 1010,11121 - P1 2 011,12 '10,12 }

(5-89)

An even simpler case worth examining is the case of a single can-

celler antenna and a single jammer. In this case we assume 912  0, J2 0.

Then in Eq.(5-75), D3 =D 0 and
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GO0  S N) 11  (5-90)0 "•' G1oG11(1 Io1o,11')÷ +C(I) (G,o+Gll) + 1

Again we observe the same type of behavior at large J/N ratios

G0 S 1-91)

P 1-0 -1 5-

Thus the processing gain at high jamming levels is

g 1 - (5-92)
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5.3.2 One Jammer and M SLC Antennas

We now derive a general expression involving only channel correla-

tion coefficients for the high J/S ratio processing gain against one jammer

when M s delobe cancelling antennas are used. With a single jammer

wo(t) = hoo(t) s(t) + h10 (t) j(t) + no(t) (5-93)

Wm(t) = h1m(t) j(t) + nm(t) ; m = 1,2,...M (5-94)

The reference signal crosscorrelation vector and the input process covariance

matrix are given by

h10 h,11

h h*10 12
R =J (5-95)

h h*

10 i1
11jP~+ 11 12 11 IM

C :(5-96)

h*Mh J ... 1 I J+N
iM 11 iM

60



In terms of antenna gain patterns and channel correlation coeffi

cients

h h*m = AO(e1) A*(el) e m5-97)10 1m 0 ml Pm0 57

h*h = A*()e -j -Ym)Im = Ap(el) m( Pmp 5-98)

where we have used the simpler notation

:im,10 - Pm0 (5-98)

Plm,lp - Pmp (5100)

th
and defined ym as the phase shift in the received jamming signal at the m

antenna relative to that at the main antenna due to differential path lengths.

Using (5-98) in (5-96) and assuming that the jamming power is large

enough relative to the noise that N may be neglected in (5-96), we see that

the typical term in (5-86) may be expressed in the form

-J ( yp-Ym)
C = {A A*(oIe) e Pmp } (5-101)

where

Pmm 1 , m = 1,2,.,M (5-102)
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As a consequence of (5-101) we may factor C into the form

C = J AH r A (N=O) (5-103)

where AH is a diagonal matrix

A*(o1)e 0 0

J Y2o A•(el)e 0

AH (5-104)

JYM

o 0 A*(el)e

and r is a matrix of crosscorrelation coefficients

I')12 ") ""P 'M

1 12

12 1

M= 
(5-105)

Using (5-97), (5-95) becomes

J Y1
A*(e 1 )e 0

I y 2

A*(el)e j 20

R J A0 (e 1) (5-106)

JYM

A*(el)e 0MO

6J
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The minimum output power is [Eq.(3-5) with the reference signal

r(t) wo(t)]

-et2  h 1 S + Ih-10 T7 J + N - RH C-I R c (5-107)

and the output SNR

P- (5-108)
-1hlo1T J + N - R H C- 1 R

Using (5-85) and letting N + 0, the expression for the processing gain at high

J/S ratios becomes

: p = 1 (5-109)
(S/J)input 1 RH A- r1  (AH)" (

Carrying out the operations indicated in (5-109) we find

11gM: 1i_•HI 1 (5-110)

-RM

where

Hi°MH 0' 1 o' "'" PMo (5-111)
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SECTION VI

SOME AJ PROCESSING GAIN RESULTS AGAINST A SINGLE JAMMER

FOR THE FADING NON-ADAPTIVE SIDELOBE CANCELLER

6.1 INTRODUCTION

In order to obtain numerical results on AJ performance using the

theory developed in Section 5.3.2, it is necessary to specify an SLC antenna

array configuration and a spatial correlation function.

For an arbitrary direction of arrival and an arbitrary antenna con-

figuration, the electrical centers of the SLC antennas will not all fall in a

plane. However, the correlation distance along the direction of propagation

is very much larger than that in the perpendicular plane. We shall assume

that for the size antennas of interest the dimensions along the propagation

direction will be small enough to produce negligible spatial decorrelation.

As a result, for purposes of calculating the spatial correlation coefficients,

it is sufficient to project the electrical centers of the antennas into a

plane perpendicular to the direction of propagation. The distance between

electrical centers in the projected antenna are used in the computation of

correlation coefficients.

As an example, consider the linear array shown in Figure 6-1. The

angle of arrival of the jammer (in the absence of scintillation) is e relative

to boresight. Antenna numbers 1,2,...,M are the SLC antennas spaced d units

apart while the mainbeam antenna is located at position 0. The projected

antenna is shown in dashed lines. For the projected antenna the elements are

spaced d cos e units apart.
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bores ight

F/

0 d
d

'p ~ 2

¶M

Figure 6-1 Linear Antenna Array Example
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In the discussion below we shall initially assume a general spatial

correlation function and then one of spec'fic form appropriate to ionospheric

scintillations. Section 6.2 derives expressions for the AJ processing gain of

an SLC for special cases of interest where the general expressions simplify to

a greater or lesser extent. Section 6.3 presents some numerical results.

i6
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6.2 DERIVATION OF AJ PROCESSING GAIN FOR SPECIAL CASES

According to Eq.(5-108), the output SNR for a single jammer is given by

P h(6-1)

fh--O 2 J + N - R C R

where S is the transmitted signal power, J is the transmitted jammer power and

N is the additive noise power. The vector R is the crosscorrelation between

the main beam signal and each of the SLC antenna output signals, and C is the

crosscorrelation matrix of the SLC antenna output signals. 'In the absence of

the SLC, the output SNR would be

h hoo12S

0O (6-2)

Iho12 J + N

Defining the AJ processing gain as the ratio of output SNR with the

adaptive array to output SNR without the array, we find

gM 1 (6-3)
PO I R H C-1I1 - _HiR

1h-• 1
2 J + N

Expressions for the typical terms in R and C are [see (5-93)

through (5-11) modified so that N 0 0],

ejym

R_ J AO() {Am(o) e mO ; m : 1,2,...M} (6-4)

-j(Y p-Y m)
C_ A(e) Aý(e) e JPmp + 6mp N ; m,p 1,2,...M} (6-5)
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where A (.) is the antenna pattern for the mth antenna, e is the direction of

arrival of the jammer relative to boresight, y is the phase delay in the pth

antenna relative to the main beam antenna for the jamming signal, Pmp is the

crosscorrelation coefficient between fluctuations of the channels from the

jammer to the mth and pth antennas (Pmm= 1 ), and

(1 ; m~p

6mp ;=m(6-6)

As in the case where the noise N was assumed zero [Eq.(5-103)], it

is possible to factor C as follows

C = J AH LM A (6-7)

where A is the diagonal matrix [Eq.(5-104)]

A = {Am(e) e amp m,p = 1,2 .... M} (6-8)

and is now

N

P•M .. iN~l2 + J 22  ~,M-1(6-9)

EMM
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where

G = IAm(e)I" (6-10)

is the gain pattern of the mth antenna evaluated at angle o.

Using (6-4) and (6-7) we find that

RH C-1 R 1 1 RH A-I !r; (AH)- 1 R (6-11)

but

RH A- 1  = J A6(p) H (6-12)

where

H 10 1 20,' 20 "

so that

RH C- R -J RM Ao(e)2 (6-13)

Using (6-13) in (6-3) and noting that

th, 0 12  
= IAo(e)12 =Go (6-14)

we obtain the general expression for AJ processing gain with one jammer,

g 1 (6-15)1 1 H -1

1 + N/JG
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We now consider the simpler but practically interesting case in

which the gains of the SLC antennas are all equal. Then we can factor rM1and

PM in the form

rM = (I + N/JGI) -N (6-16)
S1f

2m = (1 + N/JG,) eM (6-17)

where

-LM {=[p ; m,p = 1,2 .... M 1 (6-18)-4nl

P = ' m = 1,2 .... M 1 (6-19)

in which

Pmp/(l + N/JGI) ; m • p

Pmp (6-20)
1 , m=p

and

G = Gmm ; m = 1,2 .... M (6-21)

is the common SLC antenna gain.

Note that (6-18) is the form that rM takes when the receiver noise

is set equal to zero.
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Using (6-10), (6-18) and (6-19) in (6-15), the AJ processing gain

becomes

1-1
1M (6-22)

gm ^H ^-i ^
I M•P-M 4 R

(1 + N/JG1 )(1 + N/JG0 )

We now consider the further simplifications that arise when the

correlation coefficient pmp takes the form

"nmp = Rrnp = Rp-r (6-23)

This form arises in the case of a uniformly spaced linear array of antennas as

shown in Figure 6-1. For this case, fm and m take the forms

11 R 2 M-1

R* I

=M : (6-24)

R*..1M-1

LRl, R .... RM (6-25)

where

Rm = Rr /(1 + N/JGI)
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In the appendix it is shown that when the forms (6-24) (6-25) are
valid

^H ^-Idet rM+l
H ^-IMrM- = I - (6-26)

det r

so that, using (6-26) in (6-22), we see that

(1 + N/JGI) (1 + N/JG0)
9M 0 (6-27)

N ( I + 2I " N 1 det r M+l
det 

rM

In the limit of large J/N ratios

lim L -s-- je MdtL (6-28)
J/NN det rM+j L det rM+1 N=O
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6.3 CALCULATIONS FOR A LINEAR ARRAY

A linear uniformly spaced SLC array is shown in Figure 6-1. The

antenna locations are numbered 0,1,2,...M corresponding to the main beam and

the M successive SLC antennas. While the antenna spacing along the array is d

units, we note that the projected antenna spacing is d cos e. Let R(x) denote

the correlation coefficient for the received signal fluctuations (for carrier

transmission) for two points in space separated by x units and lying in a

plane perpendicular to the direction of propagation. Then we readily see that

Pmp = R(d[m-p] cose) = Rm-p (6-29)

Assuming the case of saturated ionospheric scintillations, Wittwer

[6.1] shows that the spatial correlation function R(.) is closely given by

R(x) = exp T-X (6-30)

where 0 is a correlation "distance". The rms value of the angle of arrival

fluctuations ae may be related to L0 by the following equation [Ref. 6.1]

1-• (6-31)

so that (6-30) may be expressed in the alternate form

R(x) exp r- 2 1) (6-32)
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and R takes the formm

Rm Oexp (m2 [[7 wd cos) m' (6-33)

where

CL exp (.. [/2 id cose 0e]) x( d cosej)

(6-34)

is the correlation coefficient between adjacent antennas.

For the case of large O/N ratios we may use (6-33) in (6-28) to

compute the AJ processing gain for M SLC antennas

a4 ... a£ -
(M-2)2

(ci 1 (M-2)•

det

I 1(M-1) 2

g M (6-35)

det

M 2
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Expressions for 9M for M = 1,2,3 are given below

l= 1 1 (6-36)

I1-a( 2  1
12 1 - 2a2 + 2 a' - 2a (1 _ .

2 )(1 - 4) (6-37)

1 - 2a' + 2a' - a"
93 - 1 - 3 a2 + o4 + 4a6 - 2a" - 2a'-1 - 2a C

2 + 4a' 4 + a•' - 3a1' + azo

I (6-38)
:(1 - a,)(1 - a)(l-al (638

It appears, but has not been proven that

1 1 )(1 1 - (6-39)

The behavior of gM for a near 1 is of particular interest because

it describes the onset of degradation. If we let

a = - C (6-40)

in (6-39), it is found that

-M
gM " --W- for E << 1 (6-41)

2 M!

From (6-34) we see that

1 ex( [dcoe] ) (6-42)
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When c is small we may use the first two terms in a Taylor expansion of the

exponential in (6-42)

d cos 1 cose (6-43)

It follows that the approximation (6-41) may be expressed as

I:7 Ad cos, -2M

gM 2 M M ; M = 1,2,3 (6-44)

Figure 6-2 presents plots relating glP g2 and g3 in dB to a "decor

relation" parameter

d cos e V / d cose (6-45)
Yz = 0 X 6e(-5

using the exact high J/N ratio expressions (6-36) through (6-38) and the

Gaussian shaped spatial correlation function (6-30). The dashed lines show

the small decorrelation approximation (6-44). Note that these asymptotic

approximations which are straight lines on a log-log plot are a good engineer-

ing approximation for values of the decorrelation parameter y as large as 0.3

to 0.4

The improvement in performance with increasing number of antennas

may be understood physically by noting that additional antennas allow the null

to be broadened and thus reduce the impact of the angle of arrival fluctua-

tions.
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Figure 6-2

___________Decorrelation Parameter y as a Function -

of AJ Processing Gain for 1, 2 and 3
_____ ___ ___ SLC canceller antennas assuming a single -

janmmer and high J/N ratios. Linear

-- \Antenna Array with Uniformly Spaced
Antennas, Gaussian spatial correlation-

-l N 3prxmain 2M

gm

*Z M!I

4 ___ ¾. ___L

< 7

The decorrelation parameter

y d cos - f w iCos

twhere
=direction of arrival of jammer---- --------------

d =spacing between antennas
=wavelength of carrier frequency - -

rms angle of arrival -luctuation

correlation distance

AJ ýROCE3VS;*G GAIN in 16)
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It is of interest to examine the anomalous case in which the

spatial correlatiton function has the form

R(x) = exp to (646

and thus

Rm = BImI (6-47)

where

B= exp d cose) (6-48)

The processing gain is given by the ratio

1 8 8M-1I

B
det

M-1

1 BM
1

B
det

M.

(6-49)
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Note that this result is independent of M in contrast with the previous exam-

ple and in apparent disagreement with our heuristic arguments on the benefits

of more antennas. However, one may argue that the reasoning is not wrong in

this case but ambiguous because the correlation function (6-40) corresponds to

the non-physical case of an infinite value for the rms angle of arrival fluc-

tuations. Clearly no null broadening can counteract an infinite rms angle of

arrival.
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SECTION VII

RESULTS FOR THE THREE-DIMENSIONAL SLC ARRAY

WITH MULTIPLE JAMMERS

7.1 INTRODUCTION

This section will formally state the equations that need to be

programmed to compute the processing gain of a specified three-dimensional SLC

array when subjected to L jammers arriving from specified directions.
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7.2 FORMULATION

The antennas are assumed arranged in a uniformly spaced three-

dimensional grid pattern with grids parallel to the x, y, and z axes. Thus

the location of an arbitrarily selected antenna can be specified by a radius

vector

=mpq = imdx + pdy + kqdz (7-1)

where i, j, k are unit vectors along the x, y, and z directions; dx, dy, and

dz are the uniform spacing between antenna elements aligned parallel to the x,

y, and z directions, respectively; and m, p, and q are integers. By letting

the antenna degenerate, a planar and simple linear array can be modeled. Thus

the formulation includes the two- and one-dimensional SLC performances as

special cases. We assume that m, p, and q range over the values (-M_, M+),

(-P-, P+) and (-Q_,Q+) respectively.

It is convenient to specify an antenna and its output by the sub-

script mpq. We assume that the main beam antenna is located at the origin of

coordinates. Thus, the output of the main beam antenna is given by

Wooo(t) : s(t) ho, 000 (t) + j 1 (t) hl 0ooo(t) + JL(t) hL,ooo(t) + nooo(t)

while the output of the mpq antenna is

Wmpq (t) jI(t) hl,mpq(t) + j2(t) h2,mpq(t) +

+ JL(t) h (t) + n (t) (7-2)
L L,mpq mpq
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where j9 (t) is the th jammer, h ,mpq(t) is the complex time variant gain
th

characterizing transmission from the i. transmitter location to the mpq

antenna output, and n mpq(t) is the thermal noise component at the mpq antenna

output. Note that we have assumed no signal components in any of the SLC

antenna outputs, i.e.,

h o,mpq : 0 mpq # 000 (7-3)

The complex transmission gain h can be factored into thet,mpq
following form

h ,mpq(t): A mpq(e•, ) e mpq (eZ' ) g,mpq(t) (7-4)

where et, g are the spherical angular coordinates characterizing the direc-

tion of arrival of the th jammer, Ampq(e ,) is the complex antenna gain

pattern of the mpq antenna, gmpq(eo ,) is the phase delay of the signal

arriving at the mpq antenna from the th jammer relative to the phase delay at

the 000 position [yOOO(eZ, 9) is set = 0] and gYmpq(t) is the complex time-

variant channel gain characterizing the path from the th jammer to the mpq

antenna.

To simplify the antenna model, a default option should allow all the SLC

antennas to have the same pattern, i.e.,

Ampq(e@,) = B(e,o) mpq # 000 (7-5)

while

A0 O0 (eo) = A(e,o) (7-6)
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To simplify subsequent notation we assume temrirarily that a one-

one mapping has been established between the triplet values

{mpq ; m = -M ,...-1,0,1,...M+,

p = -P_,... -1,0,1,...P+,

q = -Q_,...-1,0,1,...Q+ }

and the integers {n;n=0,1, ... K} , the triplet corresponding to the integer n

being denoted by mnPnqn. We assign n=O to the triplet 0,0,0 denoting the main

beam.

Thus, rewriting Eqs.(7-1) through (7-4),

wo(t) = s(t) hoo(t) + j1 (t) hlo(t) + ... + JL(t) hLO(t) + n0 (t) (7-7)

wn (t) = j(t) hin(t) + J2(t) h2n(t) + ... + JL(t) hLn(t) + nn(t) (7-8)

hOn = 0 ; n # 0 (7-9)

h n(t) = A n(e j, ) e n 1 gn(t) (7-10)

The SNR in the main beam, i.e., the SNR without adaptation, is

%0 s
P 0 L (7-11)

SJoG~o+ N

z= 1

where we have used the notation

Gin A(e,*) (7-12)
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for the nth antenna gain in the direction of the t-th jammer and we have used

the normalization

I g ,n I = 1 (7-13)

The SNR after subtraction of the SLC antenna outputs, i.e., the SNR

after adaptation, is given by

G0 S

P= H - (7-14)

F J t Gt + N - R C R
t=1

so that the processing gain is given by

L

L J, GO + N
SL 1 (7-15)

L it Gto + N -R C R
Z=i.

where

R = { n = 1,2,...,K 1 (7-16)

C = { WnWr ; n,r = 1,2,...,K } (7-17)

Using Eqs.(7-7) through (7-10) we can express R and C as sums of matrices each

dependent upon a single jammer (assuming uncorrelated jammers).

L -jYn( (,6 )
R: = J d AO(O9,.) { A*(e to) e n , gnO ; n = 1,2,...,K }

n I Ln i i

-J yr( r, L)- Yn (et, *)]
C = { J( Ar(e ,* ) A*(,9 ) e P + N6

t=. IrLA n L. I. anr nr

n,r = 1,2,...,K 1 (7-18)
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where

n=r

6nr 0 r (7-19)

and

nr = G (7-20)
9tr n 9tr

is the spatial correlation coefficient between reception at the nth and rth

antennas corresponding to transmission from the position of the tth jammer.

Assuming our interest is in SNR or processing gain we can normalize

both S and J to N, i.e., set N=1 in the above expressions and regard Jn as
nn

the J /N ratio.
n

It remains to specify the correlation coefficients p nr and the

phase delays yn(etti We will develop expressions for these terms as a

function of the antenna element positions, the arrival angles of the .th

jammer (e t ,), and a specified perpendicular correlation function RI(x). The

latter is the spatial correlation function in a plane perpendicular to the

direction of propagation of a received signal.

As discussed earlier, in the computation of the spatial correlation

coefficients, it is sufficient to use modified antenna element positions ob-

tained by projecting the antenna positions on a plane perpendicular to the

direction of propagation of the jammer. Thus if d denotes the distance
inr

bewenth th th th
between the n and r projected antennas for t jammer direction of

arrival,

=tn R ].(d nr) (7-21)
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Then for computation of p nr it remains only to obtain an expression for d nr

once R is specified.

Consider now the phase delay term yn(eVo ). Assuming that the jam-

mer is in the far zone of the antenna y n(ei ) depends only on modified

antenna positions obtained by projecting the actual antenna positions on a

th
line from the m jammer to the main beam antenna. Let the position of the

main beam antenna be the origin of coordinates along the line and s9n be the

th
position of the n projected antenna, then

y (e , 0 2) ----t (7-22)
n ?

where x is the wavelength.

The distances d nrSin may be obtained from the antenna positions

in the x,y,z coordinate system by means of a rotation of coordinates. Figure I

shows the relation between the x,y,z coordinate system and the x ,y ,z coor-

dinate system. The z axis coincides with a line from the origin of x,y,z

system (the main beam antenna location) to the tth jammer. This line has

spherical angular coordinates (a ,t ). The yý axis is perpendicular to z and

in the plane containing the z and z axes. Since the x ,y ,z coordinate sys-

tem is an orthogonal system the x y plane is perpendicular to the z axis. It

follows from our construction that the xt y coordinates of the antennae are

just those of the plane-projected antennas needed to compute d while the z
inr

coordinate provides sin Specifically if (xn y~ ,z ) denote the coordinates of

the n antenna in the (x ,y z )conrdinate system,
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dn (x x )2 + (yr _ yL) (7-23)

S = Zn (7-24)

in n

The relationship between (xn,ynazn) and (xn,Ynzn) is given by

X = X sin - Yn coso1  (7-25)

Y. = x cose cosoC + y cosea sino - z sine (7-26)
nn IL n IL n L

Zn = xn sine coso + Yn sine sino + Zn cose (7-27)

From (7-1) we note that

xn = mn dx (7-28)

Yn = pn dy (7-29)

Zn = qn dz (7-30)

where mn Pn f! is the triplet corresponding to the nth antenna in our one-one

mapping. Using (7-25) through (7-30) in (7-23) and (7-24) we see that

d: nr d (mn-mr) sino dc (p -p) O

+ [dx(mn-mr) cosea cos t+ d y(Pn-Pr cosea sineo - dz(qn-qr) sine-]'

(7-31)

s in = mnd x sine I cost L + Pndy sineI sino L + qndz cosa L (7-32)
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As discussed earlier, a suitable perpendicular correlation function

is given by

R (x) = e- / (7-33)

where 10 is a correlation distance parameter. This parameter is related to

a , the rms value of angle of arrival fluctions, by
6

1 _

(7-34)

The above formulae allow a computation of processing gain for a

three-dimensional array subjected to noise jamming from L independent sources

arriving at angles (e , 1,2,...L.
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SECTION VIII

ERROR RATES WITH A FADING NON-ADAPTIVE SLC ARRAY

8.1 INTRODUCTION

In this section we will develop expressions for the error rate of

modems used in conjunction with an SLC (sidelobe canceller) adaptive array. It

is assumed that saturated ionospheric scintillations nave occurred, causing

the propagation medium to produce complex Gaussian fluctuations on received

signals. It is also assumed that the adaptive array time constants are too

slow to adapt to the fading and that the signal bandwith is narrow enough to

avoid significant frequency selective fading. Thus the performance degrada-

tion suffered by the array is caused by spatial selectivity and non-adaptation

to the fading. The subsequent analysis will be concerned with the error rate

performance of a digital modem connected to the output after the SLC has

attempted to cancel the jamming signals. As in the case of the adaptive

array, two cases may be considered: the modem time constants may or may not

allow adaptation to the fading. In this section we consider the case ct a

fading adaptive modem. In order for adequate error rate performance to result

it is necessary to employ coding, interleaving and forward error correction

techniques. The raw error rates computed here may be used to evaluate the

improvement offered by coding techniques. Section 8.7 presents numerical

results on error for the simplest case - one SLC antenna and one jammer.
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8.2 SYSTEM DESCRIPTION

The system to be analyzed is shown in Figure 8-1. An array of M

auxiliary antennas with adaptive complex weights and a combiner form a side-

lobe canceller (SLC) which by subtraction attempts to cancel the L jamming

signals appearing in the sidelobes of the signal or main beam antenna. The

"cancelled" output is fed both to a digital modem for extraction of the output

data stream and to a device which implements the adaptation algorithm. This

algorithm attempts to set the complex weights p', p2 ..... pM for minimum

output power. However, the adaptation process is assumed t~o be too slow to

follow the fading.

The combiner output c(t) can be expressed as

L
c(t) = s(t) h00 (t) + L i (t) h O(t) + no(t)

Z=i

Z m( P i (t) hm(t) + nm(t) (8-I)
m=1 Z=~1

where s(t) is the transmitted signal, {i (t); x=1,2,...,L) is the set of L

jamming signals, nm is the thermal noise in the mth antenna output, and h m(t)

is a complex time variant multiplier characterizing transmission from the Eth

jammer to the mth antenna output. We may rewrite (8-1) in the form

L
c(t) : s(t) h0 (t) + i i (t) h (t) + n(t) (8-2)

9=1

91



L~t

J2 (t) L

j 1 (t) 2S(t)

0/

/ Ionosphere

1 M

Signal
Antenna

daptati oni ____ 
Output

Al gori thm < Modem Data--tDaaa

Figure 8-1 System Block Diagram.
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where

M
h (t) = hO(t) - p pm htm(t) (8-3)

m=1

M
n(t) = no(t) - L Pm nm(t) (8-4)

m=1

h00 (t) = h0 (t) (8-5)

Note that i (t) h (t) is the residual jamming component after cancellation due

to the t thjammer, while n(t) is the output thermal noise.

The transfer functions hm (t) may be expressed in the form

h m(t) = A m(e,$t,) em g in(t) (8-6)

where (ett ) are the angular spherical coordinates of the tth jammer,

ym(8t,,s) is the phase delay of the tth received jammer signal arriving at the

mth antenna measured relative to the signal antenna, Am (e,) is the far field

pattern of the mth antenna, and gim(t) is the complex time variant channel

characterizing the path from the Z th jammer to the mth antenna. The latter

has been normalized so that

!gtm(t)I 2  = 1 (8-7)

and relative phase shifts due to path delay difference have been removed and

incorporated in the phase shifts {ym(yt,¢t) ; m=l,...,M}. When the jammer and

signal transmitters are far enough apart and saturated faring occurs, it may

be assumed that the path gains are statistically independent complex Gaussian

variables.
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The performance of coherent, differentially coherent, and in-

coherent, binary and quaternary modems will be evaluated. In all cases it is

assumed that the error rate for such modems with a non-fading non-jammed

channel may be expressed in the form

Pb = f(P) (8-8)

where p is the ratio of the energy/bit to the noise power density. We further

assume that prior to detection or decision operations in the modem, the proc-

essing may be characterized as complex linear filtering. The jammers are

assumed to have spectra flat over the bandwidth of this linear filtering and

to have filter outputs characterizable as independent complex Gaussian proc-

esses when channel gains are fixed.

As a consequence of the above assumptions the modem error rate

conditioned on the channel complex gains is given by

f ( f() (8-9)
ee

where Eb is the energy bit and Ne is an equivalent noise power density

L 0 M 1
Ne = NE~h Z 2 + N + L' lp m (8-10)t1 N =L

in which NL is the one-sided power spectral density of the real th jamming

process in the vicinity of the signal carrier frequency, and N0 is the common

one-sided power spectral density of the real thermal noises at the antenna

outputs. Eb may be expressed in the form
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E = ifT Isa(t)l dt I ho=I ST
Eb -- "0 E Ihol • 8 -1

where S is the transmitted power, T is the symbol duration, and b is the

number of bits/symbol.

We define

ST S TW
2N 1 • 0 1ho N 2b 1h0 11 (8-12)

as the average signal energy/bit/thermal noise power density in the main beam

(W is the receiver bandwith and N is the thermal noise power), and

N J h t1 2 J•
n N = NO -N (8-13)

N0N

as the ratio of the output jammer power due to the ith jammer to the thermal

noise power where J is the Lth jammer transmitter power. Equivalently, n, is

the ratio of average received jammer power density to thermal noise for the

Lth jammer. With these definitions

SoIZoI'
-L (8-14 )

L n z 12 + p

where

M 
2P 1 + L I~m'2  (8-15)

m=1
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and we have defined the normalized variables

h
z9 1,2... L (8-16)
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8.3 ERROR RATE ANALYSIS FOR A SINGLE JAMMER:

INDEPENDENTLY FLUCTUATING SIGNAL AND JAMMER CHANNELS

The modem error rate may be evaluated by averaging the conditional

error rate (with the channel gains frozen) over the channel fluctuations,

i.e.,

P = f f(p) W(p) dp (8-17)e 0

where W(P) is the probability density function of p in Eq.(8-15). We consider

now the evaluation of W(p).

W(x) may be obtained as the derivative of the probability distribu-

tion function

d.W(x) = d• F(x) (8-18)

where

F(x) = Pr (p < x) (8-19)

Using (8-15),

L
Pr(p < x) = Pr(solZo' - x n,,Iz,,1' < px) (8-20)

We consider in this section the use of a single jammer and inde-

pendent fluctuations for the signal and jammer channels, i.e., h and h are
0 1

assumed statistically independent. When the jammer and communicator are

separated sufficiently, the statistical independence will be valid. In this

case we need to compute the canonic probability
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Pr(q <Q) = Pr(r 0 - r Q) (8-21)

where

rk 1 k2 k=O,l (8-22)

and {ik ; k=0,1} are ind'_pendent complex Gaussian variables. The probability

density function of rk is given by

Wk(r)= exp( a-) U(s) k=O,(

kak ak ; k4(-3

where

a rk k - k

and

r >
(8-25)u(r)=

0 r <

The density function of q is just the convolution of the density

function of r 0 with that of -r1 or

w(q) = fW0 (s) W,(s-q) ds (8-26)

Carrying out (8-26),

-q/ao

e q q>O
a0 + a

W(q) =(8-27)

q/a1e ~q<
.,• -ao + a10 0
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Since

Pr(q < Q) f Q W(q) dq (8-28)

we find that

Q/a1
1 e
aI + a0 Q<

Pr(q < Q) = (8-29)

-Q/a 0
S a0 e

a1 + a0  
Q>0

Upon identifying (for L=1)

ao = s (8-30)

aI = xn (n 1  n) (8-31)

Q = px (8-32)

in (8-29), we see that

so -px/s0
F(x) = Pr(P < x) 0 1 e ; x > 0 (8-33)-- so + xn

or, defining the ratios

P = P/so (8-34)

R = n/sO (8-35)
1 -Px

F(x) = 11+ xR e (8-36)
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The density function of p is obtained by differentiating (8-36)

[see (8-18)],

W(x) -- (+ R ePX ; x > 0 (8-37)

Using (8-17), the following integral yields the error probability for the

single jammer case:

e f ++R O e dP (8-38)

0

An alternate expression, which is sometimes more convenient, may be

obtained from (8-38) by integrating by parts,

P - e -P] f;(P)] dP (8-39)
e f L-+OR jj

0

The following represent well-known expressions for f(P),

f(P) = -exp (- ; incoherent FSK (8-40)

1 -2

f(P) = -.e ; binary and quaternary DPSK (8-41) -

f(P) Q(` 0 ) ; binary and quaternary PSK (8-42)

f(P) = Q(/P) ; binary coherent FSK (8-43)

where FSK, DPSK, and PSK denote binary frequency shift keying, differential

phase shift keying, and phase shift keying, respectively, and
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Q(2P) f e'Y/2 dY (8-44)

Noting that

I exp (incoherent FSK (8-45)

1 exp (-o) binary and quaternary DPSK (8-46)

1 exp(-D) ; binary and quaternary PSK (8-47)

S• exp(- -) ; binary coherent FSK (8-48)2• t2

and using (8-47) in (8-39), we find that

1x22 C I R 1 dP (8-49)
e /2 -1 p2-P +

0

Using the change of variable y : /2p,

J Itexp(-. X~) Il - II
p 1=L1 exp(-Py/2) dy (8-50)

The first term may be integrated, yielding

1 lx((+Py2/2)

Pe= ex- - yPR/2 dy (8-51)
;/V2w

0
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Upon the change of variable y/R/2 -I. z

1+p1 -- 1 exp (~ )~

Pe -2 _ "1+z" dz ; PSK (8-52)

More generally, since (see page 314 of Ref.[8.1])

J exp(-Xx'2  dx 7r eX Q2(/2) (8-53)

fo 1+7

we see that

P e Q(V2(i- .) ; PSK (8-54)

Using the asymptotic expansion

Q(x) 2e _2 /2 (8-55)

1 x/ 2  / Ii 1j

we deduce the approximations

P R R-< +
Pe ÷ 2•]_ (I -) ; R << 1+P (-6

(8-56)

+ R+P ; R << 1, P << 1
4
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in an exactly analogous procedure, using (8-48) in (8-39) we find

that

1+2P

I" eI ii- coherent FSK(8-7)

We now consider binary and quaternary DPSK and insert (8-46) in

(8-39), resulting in the integral

P ~ 1+f e-'F 1e-iP] d )(8-58)
e T__P

0

This integral can be expressed in terms of the exponential integral

function

E1 (x) f J t dt (8-59)

0

as

e 7 ~ ( R ~- .-E1 R. DPSK (8-60)

With the 3 dB difference for incoherent FSK

/ 1+2P

= .\ -M e E2R E(77P)) incoherent FSK (8-61)
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Since

-Z

E (z) e - + -2 . .". (8-62)

we find that

P _I- i (i - ) ; R << I+p

R+P (8-63)
- ;R,P << 1
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8.4 ERROR RATE ANALYSIS FOR MULTIPLE JAMMERS:
INDEPENDENT FLUCTUATING SIGNAL AND JAMMER CHANNELS

In this section we consider the evaluation of error rate for multi-

ple jammers. Equations (8-17) through (8-20) are applicable to the multiple

jammer case. Computation of (8-20) requires an evaluation of a probability of

the generic form,

L
H(Q) = Pr(r 0 - < rj Q) (8-64)

t=i1

where

r ; 12 m 2,1,... M (8-65)

and t is a complex Gaussian random variable. In this section we shall

assume that the jammers and communicator are mutually separated far enough

apart that the set {h (t) ; L=O,1,...L} are statistically independent. Then

the set {P, ; L=O,I ,...L) may be taken as statistically independent.

We shall first find the p.d.f. (probability density function) of

L
Sr 0 - L r. (8-66)

t= 1

by transforming its c.f. (characteristic function). This is, if

C(s) = e-sq f fW(q) e-sq dq (8-67)

is the c.f. of q (we have generalized to a complex argument s), then the

p.d.f. of q is given by
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j
iq /C(s) esq ds (8-68)

Equations (8-67) and (8-68) are two-sided Laplace transform pairs. The

integral in (8-68) is a contour integral closed around the left half plane for

q > 0 and around the right half plane for q < 0.

Because of the assumed independence of the set {r the c.f. of q

factors as follows

L
-s (r 0 - r.) L

C(s) = e CO(S) i CY(-s) (8-69)
i=l1

where

-sr L
Ce(s) = e ; 0,1 .... L (8-70)

is the c.f. of r.. This c.f. is given by [see (8-23) and (8-24)]

COe(s) = e5 - a-1 exp( - a ) dx

0

(8-71)

1/a.

s + i/a•
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Thus using (8-71) in (8-69)

I/a 0 L •-1/a.
C(s) = + 1/a 0  L \ • ) (8-72)

0 L=1

We desire H(Q), (8-64), which is the d.f. (distribution function)

of q since from this d.f. the d.f. of P, F(x), Eqs.(8-19) and (8-20), may be

trivially determined and thereby the desired error rate via the integral

Pe f F(p) (-f(p)) dp (8-73)
0

where f(p) is given by Eqs. (8-39) through (8-48).

We may obtain a contour integral representation of H(Q) as follows

_= I C(s) esQ ds (8-74)
H(Q) = W(q) dq = s d

where in carrying out this integration the path of integration along the j

axis is indented to the right of the pole at the origin and the contour closes

in a large semi-circle in the left half plane.

Since the counter includes only the poles at s = -1/a 0 and s = 0,

from Cauchy's residue theorem,

H(Q) = Res{C(s- elQ} + Res{Cs--esQ} (8-75)
s=-I/a 0  5s=O

or

H(Q) = 1-(ri - -Tao e Q > 0 (8-76)S-1 ao+aL
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Upon making the identifications

a0  = S0  (8-77)

a. = xnt = 1,2,... L (8-78)

Q = px (8-79)

we see from (8-20), (8-64) and (8-65) [note that IqzI 2  1], that

L

F(x) 1 I l +1xR£)e-P (8-80)

where P is given by (8-34) and

RY = ni/s0 (8-81)

The error rate is thus given by the following integral for binary and

quaternary DPSK

2 - 2 1 IR.) e-(P+l)x dx (8-82)

and by the integral

S1 ( )e- (P+) dx (8-83)Pe 22
0 L=1

for binary and quaternary PSK. The minor modifications for coherent and

incoherent FSK are evident.
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8.5 ERROR RATE ANALYSIS FOR MULTIPLE JAMMERS:

CORRELATED JAMMER CHANNELS ONLY

In this section we generalize the previous analysis to the case in

which the fading on the various jammer channels is correlated but the signal

channel is still uncorrelated with the jammer channels. First, we wish to

compute H(Q), the d.f. of the random variable q [see Eqs.(8-64) - (8-66)].

This d.f. may be computed from (8-74) once the c.f. C(s) is known. Under the

assumption that the signal channel fluctuations are independent of the jammer

channels' fluctuations, C(s) factors into the product

L
-sr0

C(s) = e • e (8-84)

The first average has already been computed [see Eq.(7.51)]. We

consider the evaluation of the second average which is the c.f. of the random

variable

L L
d = r, = L 1LI" (8-85)

Comparing Eq.(8-20) with Eqs.(8-64) and (8-65) we can make the identification

ut z. v'n (8-86)

i .e.,

L
d = xnI 1z 1' (8-87)

1=10
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The random variable d is a quadratic form in correlated complex

zero mean Gaussian variables. Turin [8.1] has evaluated the characteristic

function of a quadratic form in complex Gaussian variables,

d = H QZ (8-88)

as

*(s) =esd = 1 (8-89)de TL I + s M

where Q is the matrix defining the quadratic form and M is the moment matrix

of the random variables. In our case fi is the diagonal matrix

Q x N (8-90)

where

n 0 ... 0

0 n2  ... 0
S: (8-91)

"* . 0

0 0 nL

and

M= I zLzn , i,n = 1,2 ... L L (8-92)

so that

0(s) det I + sM N (8-93)
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Using (8-89) and (8-71) in (8-84)

I/a 0  1

C(S) S + i/a 0  det[ I - sx M N ] (8-94)

The d.f. H(Q) is thus given by (see (8-74)) the contour integral

H(Q) o 1 ds (8-95)
27rj s + i/a 0  det[ I- sx M Nj] s

-j®

It will be shown below that the poles of the second factor in (8-74) are all

in the right half plane. Thus, using Cauchy's residue theorem,

1 ~~-Q/a 0  (-6
H(Q) = I1 - e (8-96

det [ I + - M-N ]
a a0

Using the definition (8-32), (8-34), and (8-81),

F(x) I - det L I + x -MR - e (8-97)

where

R 0 ... 0

0 R2 ... 0

R (8-98)

0

0 0 RL

"r -,.• '. , :; t ,,



A single integral expression for P is obtained by substituting (8-97) in
e

(8-73) and using the appropriate expressions for (-f(p)). Thus

I f e-(P+l)x binary and (8-99)
e = 2 2 det LI + xM RI dx quaternary DPSK

0

I 1 f e-(P+l)x binary and (8-100)
e 2 J V , det [I + xM R] dx ;quaternary DPSK

0

Alternatively we note that the denominator of (8-93) is an Lth

order polynomial in sx and may be factored to explicitly show the poles of

#(s). If the eigenvalues of the matrix product M N are denoted by { 2;L=1,2,

... L} then

L
det [I + xM N] fl (1 - sxxg) (8-101)

t= 1

Due to the positive definite nature of M N, all the eigenvalues are positive

numbers and thus the poles of *(s) are in the right half plane. Using (8-101)

in (8-94) we arrive at the following expression for the c.f. of q

- 1/a0  L, 1/ -lxX

C(S) - S I/a' k=l s l/x (8-102)

which is identical to the form (8-72) in the case of independently fluctuating

jammer channels.
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It follows that the d.f. H(Q) is given by an analogous equation to

(8-76)

L a0 - Q/a 0

H(Q) = 1- 8 e (8-103)1I ao0 + XX I

Then using (8-77) and (8-79), the c.f. of I becomes i

F(x) = 1 - r i 5 ) e (8-104)

where

St= I/P0 (8-105)

Finally, the error rate expressions are identical to (8-82) and

(8-83) with the replacement S{=R,.
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8.6 ERROR RATE ANALYSIS FOR MULTIPLE JAMMERS:
GENERAL CORRELATED CHANNEL CASE

We consider here the general case of mutually correlated communi-

cator and jammer channels. The d.f. H(Q) can be computed from the c.f. C(s)

via (8-74). We may use the results of Turin [8.1] again to compute C(s),

since the latter is the c.f. of a quadratic form in complex Gaussian vari-

ables, i.e.,

-s l(ll'- L Iuk

C(s) = e X=1 (8-106)

From (8-88) and (8-89) we see that

C(s) =det LI + sM_ Q (8-107)

where now

M : IzLzn ; t,n = 0,1,2 .... L} (8-108)

and Q is the diagonal matrix
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s0 0 0 .. 00O

0 -xn 0 0

Q 0 -xn 2  (8-109)

o 0 ... 0 -xnL

From (8-74) we see that

H(Q) = Res s det [I + sM Q] (8-110)
left half plane

where the pole at the origin is included in the left half plane by indenta-

tion. In the case of no correlation between the signal and jammer channels

there was only one pole in the left half plane aside from the pole at the

origin. It is not known at this point if this type of pole configuration will

stay the same for arbitrary correlation. However, for small correlation at

least, one may expect only one left half plane pole. If this pole is denoted

by

s = -1/a (8-111)

then, from (8-110),

H(Q) 1 1 - SO e + QJ (8-112)
s : -1/Q
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Alternatively if the eigenvalues of M Q are {X ;=0,1,...,L} with

X 0=a, then

H(Q) 1 x) e-Q/ (8-113)
,(=1 (x) + XL(x)

where we have shown explicitly the dependence of a and A. on x.

It follows from (8-79) that the d.f. of p can be taken as either of

the two equations:

L a(x) e-PX/ C(x)

F(x) H 1- a(x) -e (8-114)

,= a Ix) + s•(x)

+sG x -xaxF(x) = 1 - det LI + sM_ Q] erx I (8-115)

s = -1/0(x)

A single integral expression for Pe is obtained by using either

(8-114) or (8-115) in (8-73), with appropriate specification of (-f(p)) for

the modem of interest.

We will now examine the case of a single jammer in more detail. In

this case

r 1 r 0
M 0*1 (8-116)

r011

I- 0 0 ]
Q x 1  - (8-117)
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Simplifying the notation by the definitions

r0 1 = r (8-118)

n : n (8-119)

we find that

+srs l -sxnr
P(s) = det [I + sMQ] det (8-120)-- -- sr*s 0 1-sxn

or

P(s) = -xnso(1 - Irl') s 2 + s(s 0 - xn) + 1

= (1 + sO)(I - sA) (8-121)

where

= 2xns0(1 - mV) > 0 (8-122)

I(So - xn)' + 4xns,(1-IrV) - (PO - xn)

2xns 0(1 - I)r(')Sx => 0 (8-123),

• 0 - xn) 1 + 4xnso(1l-1r') + (so - xn)

Using (8-122) and (8-123) in (8-114),

F(x) = - _ + -0- xn px (x) (8-124)
(so + -xn 4xnso rj
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With the definitions P and R in (8-34) and (8-35),

-~) 1 1 xR ___________xR-_rR___-x

F~x, - 1- + x)R- 4Rx I rv~x( I(~R~

(8-125)
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8.7 SOME EXAMPLES

For purposes of illustration we present some numerical results for

the simplest case - a single jammer and a single auxiliary antenna. We exam-

ine the case of PSK transmission. From Eq.(4-24) the error rate is given by

- 1+P)
Pe 2 eR Qý 21/7P) (8-126)

e
To evaluate P e it is necessary to determine P and R. For the case of one

antenna and one jammer, these are given by (see Eqs. (4-4),(4-5),(3-4) and

(3-6)

1 + p j

P I (8-127)
sO

R - (8-128)N so0

where pI is the optimum complex weight, so is the value of average energy/bit

/noise power density for the received signal, N is the thermal noise power of

the main and auxiliary antenna outputs and J is the transmittted jamming

power. hl(t) is the complex gain of the residual channel from the jammer to

the canceller output, (Eq. (2-3))

h1 (t) = h1o(t) - p1h1 1 (t) (8-129)

in which hlo(t), h1 1 (t) are the jammer to main and auxiliary antenna channel

complex gains (Eq.(2-6)) respectively.
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The optimum weight is obtained from equations in Section 3. For

the single weight case we find that

J 1 h1 0 h* 1

P1  1 (8-130)

h- 1 J 1 + N

Using (8-130) in (8-129) and computing ThTF we find that

I"oh hI'J.
T1- - 1011 1 + N (8-131)

Th11117 J I + N \ h,1 T 'J I+ NJ

Using the definitions

G = 1 IAo(e,, 1)1
2  (8-132)

G = 1 A1(e 1 ,0I) 1f" (8-133)

P = g10g*1 (8-134)

for the antenna gains in the direction of the jammer and using Eq.(8-131) and

(8-132)

T1 G G1 0 G1 1 +pI2 J1 +1N N (8-135)
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Three parameters of interest are t

GIJ
S- N (8-136)

GIO
Y 10 (8-137)

6 = 1- ' (8-138)

where 8 is the ratio of the received jammer power to thermal noise power in

the auxiliary antenna output, y is the ratio of the main beam antenna gain to

the auxiliary antenna gain in the direction of the jammer, and 6 is a

decorrelation parameter.

Using these parameter definitions in (8-135) and (8-128) we find

that

R (B+l) (1 + 6p) (8-139)
s 0 (0+1)2

Also using these parameter definitions and (8-132) through (8-133) in (8-130)

and (8-127) we see that

P = 1 D + (-y) y(1-6) (8-140)so0

There are now four parameters that define the performance of the system: so%

6, Y, and 0.

The decorrelation parameter 6 is related to £ in Eq. (6-42) by 6 2c+c'Z 2c

and to y in Eq. (6-45) by 6 • 2y'.
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Some limiting cases are of interest. Consider first the case of no

decorrelation, 6 = 0, then

R s (=I ;2 Y = 0 (8-141)
s0

P Lo + - y = 0 (8-142)

Assume also a large jammer, i.e., 8 >> 1, then

R . '- (8-143)
so

1 + Y (8-144)so

1+ D So0+ I +
R Y 8-145)R y

Typical values of Y are of the order of I or less so that at large

SNR's (1+P)/R is a large number. Thus from Eq.(4-27)

P 1 +4 >> 1, s >> 1 (8-146)

The advisability of keeping y small is evident from (8-146), the smaller y

yields the smaller error rate. It is also evident that with G=O and y small,

the jammer is effectively cancelled and the same performance is achieved as

with no jammer.
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Consider now the limiting case 6=1, complete decorrelation. Then,

R --• B ; >> 1,6 1

so
0 (8-147)

To the extent that yB/s 0 is still a small number and s is larger, we may

still use the approximation in Eq.(4-6),

p 1 + yB (8-148)
e 4s0

Now we see that the jammer can increase the error rate considerably. Under

the condition 6 = 1, the auxiliary antenna gain goes to zero (p 1 =O) and no

sidelobe cancellation is possible.

Figure 8.2 presents a representative calculation of error rate as a

function of 6 for 0=1000, Y=1 with a family parameter s0=3n dB, n=1,2 .... 9.

Note the rapid degradation in error rates with 6 at the high SNR's. Typically

3 dB of degradation sets in when 6 increases from 0 to .003
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APPENDIX

PROOF OF A MATRIX IDENTITY

We shall prove a matrix identity that was useful in the text. Given

a symmetric matrix

rM = { mp m,p = 1,2,...,M } (A-I)

of the form

omp Ppm Rm-p (A-2)

i.e., Hermitian symmetric with the property that a matrix element depends for

its value only on the difference between its indices, then the following

matrix property is valid,

H r- 1 det (A-3)-£M I 0M = 1- -det- A 3

To prove (A-3) we note first that -1M+I can be partitioned in the

form

1 T

R = 
(A-5)

PRVIU PACr
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The determinant of-4+1 is equal to the sum of the products of the

elements of any single row, such as the first row, by their cofactors. If the

cofactors of the first row of are denoted by [A1 1 ,A 1 2 ,...A 1 M+l], then we

see that

A1 1  = det rN (A-6)

Aim = (- 1 )+m det I_•' C-m-2 Cm "'" 3 < m < M-1 (A-7)

A 12  = det I. ý2 ... M (A-8)

A =,M+1 - (-1)M+2 det _ 1 *.2 " -C" 1 (A-9)

where C is the pth column vector in 1, i.e.,

M= -C1 C2  -CM (A-10)

Note that the matrix in (A-7) differs from that in (A-8) in that

the mth column of rM has been removed and a new first column p inserted. IfM M
two columns of a matrix are interchanged, the determinant of the new matrix is

the negative of the determinant of the original matrix. Thus Alm can be ex-

pressed in the alternate form
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Ailm = det Il1, C2 ... C~i- 2 C- C=]M 3 < m < M (A-li)

A -' ~ det C2... L IC.- 1' (A-12)

where we have interchanged the first column in (A-7) with the second column,

and then the second column with the third, etc., until p4 interchanges posi-

m- 2
tion with Cý_2, i.e., m-2 interchanges for a factor of (-1)

If we define the vector

-A12

B = -A13 (A-13)

-A1M+
lM+ 1

and evaluate the determinant of !M+I by use of the cofactors of the first row,

it follows that

det r = det rM BT 2M (A-14)

Examination of the structure of { Aim ; m=2,...,M+1 ) reminds one

immediately of a rule for the solution of a set of linear equations. In par-

ticular, consider the equation for the unknown vector x:

M = I (A-15)

The solution for x is given by

x r --*(A-16)
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We denote xp as the pth component of x,

xI

xx2 (A-17)

xM

The solution for x is given byP

det I -I C2 . .C-* - pi P -• C-p+I " C-

Xp = det rM (A-18)

Comparison of (A-li) and (A-13) with (A-17) and (A-18) shows that

_BT = xT detM = - det (A-19

where we have used the fact that rM is Hermitian symmetric.

Then, using (A-19) and (A-14) and dividing the equation by det rM

we obtain Eq.(A-3).
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